140 research outputs found

    Detecting Star Formation in Brightest Cluster Galaxies with GALEX

    Full text link
    We present the results of GALEX observations of 17 cool core (CC) clusters of galaxies. We show that GALEX is easily capable of detecting star formation in brightest cluster galaxies (BCGs) out to z≄0.45z\ge 0.45 and 50-100 kpc. In most of the CC clusters studied, we find significant UV luminosity excesses and colors that strongly suggest recent and/or current star formation. The BCGs are found to have blue UV colors in the center that become increasingly redder with radius, indicating that the UV signature of star formation is most easily detected in the central regions. Our findings show good agreement between UV star formation rates and estimates based on Hα\alpha observations. IR observations coupled with our data indicate moderate-to-high dust attenuation. Comparisons between our UV results and the X-ray properties of our sample suggest clear correlations between UV excess, cluster entropy, and central cooling time, confirming that the star formation is directly and incontrovertibly related to the cooling gas.Comment: 39 pages, 11 figures; accepted for publication in The Astrophysical Journal. Figure quality reduced to comply with arXiv file size requirement

    A Powerful AGN Outburst in RBS 797

    Full text link
    Utilizing ∌50\sim 50 ks of Chandra X-ray Observatory imaging, we present an analysis of the intracluster medium (ICM) and cavity system in the galaxy cluster RBS 797. In addition to the two previously known cavities in the cluster core, the new and deeper X-ray image has revealed additional structure associated with the active galactic nucleus (AGN). The surface brightness decrements of the two cavities are unusually large, and are consistent with elongated cavities lying close to our line-of-sight. We estimate a total AGN outburst energy and mean jet power of ≈3−6×1060\approx 3 - 6 \times 10^{60} erg and ≈3−6×1045\approx 3 - 6 \times 10^{45} erg s−1^{-1}, respectively, depending on the assumed geometrical configuration of the cavities. Thus, RBS 797 is apparently among the the most powerful AGN outbursts known in a cluster. The average mass accretion rate needed to power the AGN by accretion alone is ∌1M⊙\sim 1 M_{\odot} yr−1^{-1}. We show that accretion of cold gas onto the AGN at this level is plausible, but that Bondi accretion of the hot atmosphere is probably not. The BCG harbors an unresolved, non-thermal nuclear X-ray source with a bolometric luminosity of ≈2×1044\approx 2 \times 10^{44} erg s−1^{-1}. The nuclear emission is probably associated with a rapidly-accreting, radiatively inefficient accretion flow. We present tentative evidence that star formation in the BCG is being triggered by the radio jets and suggest that the cavities may be driving weak shocks (M∌1.5M \sim 1.5) into the ICM, similar to the process in the galaxy cluster MS 0735.6+7421.Comment: Accepted to ApJ; 20 pages, 11 low-resolution figure

    Abundances of s-process elements in planetary nebulae: Br, Kr & Xe

    Get PDF
    We identify emission lines of post-iron peak elements in very high signal-to-noise spectra of a sample of planetary nebulae. Analysis of lines from ions of Kr and Xe reveals enhancements in most of the PNe, in agreement with the theories of s-process in AGB star. Surprisingly, we did not detect lines from Br even though s-process calculations indicate that it should be produced with Kr at detectable levels.Comment: 2 pages, 1 figure, to be published in the Proceedings of the IAU Symposium 234: Planetary Nebulae in Our Galaxy and Beyond, eds. M.J. Barlow, R.H. Mende

    Streaming cold cosmic ray back-reaction and thermal instabilities across the background magnetic field

    Full text link
    Using the multi-fluid approach, we investigate streaming and thermal instabilities of the electron-ion plasma with homogeneous cold cosmic rays drifting perpendicular to the background magnetic field. Perturbations across the magnetic field are considered. The back-reaction of cosmic rays resulting in the streaming instability is taken into account. The thermal instability is shown not to be subject to the action of cosmic rays in the model under consideration. The dispersion relation for the thermal instability has been derived which includes sound velocities of plasma and cosmic rays, Alfv\'{e}n and cosmic ray drift velocities. The relation between these parameters determines the kind of thermal instability from Parker's to Field's type instability. The results obtained can be useful for a more detailed the investigation of electron-ion astrophysical objects such as galaxy clusters including the dynamics of streaming cosmic rays.Comment: Submitted to MNRAS. arXiv admin note: substantial text overlap with arXiv:1203.573

    A relationship between AGN jet power and radio power

    Full text link
    Using Chandra X-ray and VLA radio data, we investigate the scaling relationship between jet power, P_jet, and synchrotron luminosity, P_rad. We expand the sample presented in Birzan et al. (2008) to lower radio power by incorporating measurements for 21 gEs to determine if the Birzan et al. (2008) P_jet-P_rad scaling relations are continuous in form and scatter from giant elliptical galaxies (gEs) up to brightest cluster galaxies (BCGs). We find a mean scaling relation of P_jet approximately 5.8x10^43 (P_rad/10^40)^(0.70) erg/s which is continuous over ~6-8 decades in P_jet and P_rad with a scatter of approximately 0.7 dex. Our mean scaling relationship is consistent with the model presented in Willott et al. (1999) if the typical fraction of lobe energy in non-radiating particles to that in relativistic electrons is > 100. We identify several gEs whose radio luminosities are unusually large for their jet powers and have radio sources which extend well beyond the densest parts of their X-ray halos. We suggest that these radio sources are unusually luminous because they were unable to entrain appreciable amounts of gas.Comment: Accepted for publication in the Astrophysical Journal; 8 pages, 3 color figures, 1 tabl

    Hot Gas in Galaxy Groups: Recent Observations

    Full text link
    Galaxy groups are the least massive systems where the bulk of baryons begin to be accounted for. Not simply the scaled-down versions of rich clusters following self-similar relations, galaxy groups are ideal systems to study baryon physics, which is important for both cluster cosmology and galaxy formation. We review the recent observational results on the hot gas in galaxy groups. The first part of the paper is on the scaling relations, including X-ray luminosity, entropy, gas fraction, baryon fraction and metal abundance. Compared to clusters, groups have a lower fraction of hot gas around the center (e.g., r < r_2500), but may have a comparable gas fraction at large radii (e.g., r_2500 < r < r_500). Better constraints on the group gas and baryon fractions require sample studies with different selection functions and deep observations at r > r_500 regions. The hot gas in groups is also iron poor at large radii (0.3 r_500 - 0.7 r_500). The iron content of the hot gas within the central regions (r < 0.3 r_500) correlates with the group mass, in contrast to the trend of the stellar mass fraction. It remains to be seen where the missing iron in low-mass groups is. In the second part, we discuss several aspects of X-ray cool cores in galaxy groups, including their difference from cluster cool cores, radio AGN heating in groups and the cold gas in group cool cores. Because of the vulnerability of the group cool cores to radio AGN heating and the weak heat conduction in groups, group cool cores are important systems to test the AGN feedback models and the multiphase cool core models. At the end of the paper, some outstanding questions are listed.Comment: 31 pages, 9 figures, to appear in the focus issue on "Galaxy Clusters", New Journal of Physics, http://iopscience.iop.org/1367-2630/focus/Focus%20on%20Galaxy%20Cluster

    Discrepant Mass Estimates in the Cluster of Galaxies Abell 1689

    Get PDF
    We present a new mass estimate of a well-studied gravitational lensing cluster, Abell 1689, from deep Chandra observations with a total exposure of 200 ks. Within r=200 h-1 kpc, the X-ray mass estimate is systematically lower than that of lensing by 30-50%. At r>200 h-1 kpc, the mass density profiles from X-ray and weak lensing methods give consistent results. The most recent weak lensing work suggest a steeper profile than what is found from the X-ray analysis, while still in agreement with the mass at large radii. Previous studies have suggested that cooler small-scale structures can bias X-ray temperature measurements or that the northern part of the cluster is disturbed. We find these scenarios unlikely to resolve the central mass discrepancy since the former requires 70-90% of the space to be occupied by these cool structures and excluding the northern substructure does not significantly affect the total mass profiles. A more plausible explanation is a projection effect. We also find that the previously reported high hard-band to broad-band temperature ratio in A1689, and many other clusters observed with Chandra, may be resulting from the instrumental absorption that decreases 10-15% of the effective area at ~1.75 keV.Comment: 18 pages, 15 figures. ApJ accepte

    Systematic study of X-ray Cavities in the brightest galaxy of the Draco Constellation NGC 6338

    Full text link
    We present results based on the systematic analysis of currently available Chandra archive data on the brightest galaxy in the Draco constellation NGC 6338, in order to investigate the properties of the X-ray cavities. In the central ~6 kpc, at least a two and possibly three, X-ray cavities are evident. All these cavities are roughly of ellipsoidal shapes and show a decrement in the surface brightness of several tens of percent. In addition to these cavities, a set of X-ray bright filaments are also noticed which are spatially coincident with the H{\alpha} filaments over an extent of 15 kpc. The H{\alpha} emission line filaments are perpendicular to the X- ray cavities. Spectroscopic analysis of the hot gas in the filaments and cavities reveal that the X-ray filaments are cooler than the gas contained in the cavities. The emission line ratios and the extended, asymmetric nature of the H{\alpha} emission line filaments seen in this system require a harder ionizing source than that produced by star formation and/or young, massive stars. Radio emission maps derived from the analysis of 1.4 GHz VLA FIRST survey data failed to show any association of these X-ray cavities with radio jets, however, the cavities are filled by radio emission. The total power of the cavities is 17\times 1042 erg s-1 and the ratio of the radio luminosity to cavity power is ~ 10-4, implying that most of the jet power is mechanical.Comment: The paper contains 12 figures and 3 tables, Accepted 2011 December 7 for publication in MNRA

    Detecting the orientation of magnetic fields in galaxy clusters

    Full text link
    Clusters of galaxies, filled with hot magnetized plasma, are the largest bound objects in existence and an important touchstone in understanding the formation of structures in our Universe. In such clusters, thermal conduction follows field lines, so magnetic fields strongly shape the cluster's thermal history; that some have not since cooled and collapsed is a mystery. In a seemingly unrelated puzzle, recent observations of Virgo cluster spiral galaxies imply ridges of strong, coherent magnetic fields offset from their centre. Here we demonstrate, using three-dimensional magnetohydrodynamical simulations, that such ridges are easily explained by galaxies sweeping up field lines as they orbit inside the cluster. This magnetic drape is then lit up with cosmic rays from the galaxies' stars, generating coherent polarized emission at the galaxies' leading edges. This immediately presents a technique for probing local orientations and characteristic length scales of cluster magnetic fields. The first application of this technique, mapping the field of the Virgo cluster, gives a startling result: outside a central region, the magnetic field is preferentially oriented radially as predicted by the magnetothermal instability. Our results strongly suggest a mechanism for maintaining some clusters in a 'non-cooling-core' state.Comment: 48 pages, 21 figures, revised version to match published article in Nature Physics, high-resolution version available at http://www.cita.utoronto.ca/~pfrommer/Publications/pfrommer-dursi.pd
    • 

    corecore